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1. INTRODUCTION

This research effort focuses on the viability of using Neural Networks to classify
seismic events using only parametric data automatically extracted from the original
seismogram along with the official classification as determined by the Center for Seismic
Studies. In contrast to existing knowledge-based systems, this method is not based upon
seismological expertise. Parametric waveform representation requires that the essential
charactenistics of a particular event type are adequately represented by the transformations
utilized. Prerequisite background information was reviewed in the first technical report of
this project [15] and is used as reference throughout this report. A brief investigation
using fuzzy logic in lieu of neural networks for seismic event classification was conducted
as a related research interest that was indirectly sponsored by this research in terms of
database usage and seismic event processing.

The seismological aspects of this research could potentially require extensive
background training within the field of seismology. By approachiag the seismology
problem as a signal classification problem, as opposed to that of a purely seismic problem,
familiarity with seismic phase identification, travel times and related considerations can be
somewhat over looked. At this point, the classification problem depends more on
traditional signal processing algorithms and supervised learning with neural networks.
The carefully constructed data base used in this research, allows efforts to concentrate
mainly on the application of Neural Networks to the solution of the problem. This data
base includes only seismic events that have been analyzed by seismologists and are
considered to be correct in terms of parametric data and event classification.

In order to test the usefulness of this system, a data base of waveforms from the
Center for Seismic Studies containing time series data as well as parametric data was
utilized. The seismic wave forms contained in the data base have been analyzed by seismic
experts as to the event classification, magnitude, location and a host of other information.
These wave forms are from the GSETT data base and allow for supervised learning of
their classification by the different neural networks. The system applies signal
preprocessing for translation of time series seismic data into parametric data. This
parametric data was then directly applied to the neural networks.

1.1 Database

The Center for Seismic Studies (CSS) is an agency funded by DARPA with the
principle objective of providing the research community easy access to data involving
treaty monitoring seismology [12]. Wave form and parametric data are available on-line
with access to the Central Data Repository via Internet. The data base used in this
research is listed by filename, station and Julian date in Appendix A. All of the wave
forms listed in these tables are a small subset of the GSETT database base available from
CSS [4,5]. These wave forms were produced by the Washington Experimental
International Data Center (EIDC) from a 71 day test with data collected from 60 globally




distnibuted stations. This GSETT data was produced for the UN Conference on
Disarmament/Group of Scientific Experts Technical Test (1990-1991). The data set
includes solutions generated by expert systems, and was reviewed by seismic analyst. The
entire GSETT data base was made available on CD-ROM, but the on-line access via
Internet was used for actual collection of a test data base. The CSS provides SQL data
base management along with special purpose software entitled CenterView developed by
CSS.

The GSETT data base contains 1,067 discrete events with 101,364 wave form
segments and requires 1.418 GBytes of storage. Two smaller data bases where
constructed from GSETT. One set of 75 wave forms (Appendix A) represents 5 event
types with 15 different events per type collected from a range of recording stations. The
small data set only contains 3 event types from a single recording station. Both data base
subsets were carefully checked for reliability of event classification. CSS is actively
creating a data base considered to be a Ground Truth Data Base in which the classification
and location are verified by a human observer. This data base is set for initial release
during the spring of 1993. Discussion with CSS confirms that most of the 75 wave form
used in this research are of a high degree of reliability in terms of analytical accuracy with
many seismic traces due to be included in the Ground Truth Data Base [37].

1.2 Research Procedure

Three major testing schemes were utilized in this investigation, Individual
parametric transformations, such as ARMA coefficients, were generated and used as input
to neural networks for training and testing. The transformations that were found to yield
classification results better than approximately 40 percent with a backpropagation network
were then subjected to a larger series of tests to access the statistical significance of the
transformation. A third exploratory scheme combined different transformations into a
single training set for application to the neural network.

A literature search suggests many different signal transformations for the reduction
of raw seismic waveform data into parametric data. The transformations listed below
were experimentally used to generate parametric data for subsequent training and
classification with neural networks.

ARMA modeling
Spectrograms
Scalograms
Moment Features
Cumulants
Bispectrum Analysis
Chaotic Model
Waveform Envelope
Signal Duration




Fractal Dimension
Density Functions
Dominate Frequency

Adaptive filters were used with some of the mentioned transforms for the
reduction of periodic components in the seismic trace. The adaptively filtered signals
would often improve the neural network's classification by 20 percent. Single dimension
Kalman filters were tested as a means of pre-whitening the seismic waveform but did not
provide any consistent improvement in the neural network's classification.

The comprehensive test series of the database generated from the GSETT data
was converted into various parametric test files. Each type of parametric conversion was
randomized onto 23 different training and classification schemes. Eleven different
parametric conversions were developed yielding 253 different test cases. Each test case
was trained on a backpropagation, supervised Kohonen and a Radial Basis neural
network. The backpropagation networks were each trained for 10,000 iterations with a
fixed learning rate and momentum. Training time averaged 10 - 12 hours on an IBM
model 70- 386/20 MHz P.C. The results are summarized in Chapter 3 and detailed results
are presented in Appendix B.

The neural network software developed for the research was ported to a DEC
VAX and a SUN system. Program run times for the VAX, SUN and a 486/66 MHz P.C.
were observed to be within 20 percent for each test run on each platform. Final software
development was restricted to a P.C. based platform due to the availability of multiple
computers.

1.3 Organization

This introductory chapter, Chapter 1, has offered a somewhat broad description of
the seismic discrimination problem. A more detailed description of the seismic problem
and associated background information can be found in the first technical report of this
project [15]. The first report discusses some of the current research methods for seismic
discrimination leading to the incorporation of neural networks for seismic event
classification.  The various tables listed in Appendix A with seismic waveform names,
stations and Julian dates are sufficient references such that anyone accessing the on-line
database at the Center for Seismic Studies can retrieve the related seismic waveforms.
The related software tools developed in later chapters, were implemented in the ADA
language and are detailed in a companion report [16] of on the software developed and
parametric transformation routines.

The remainder of this report is divided into three chapters. Chapter 2 provides a
brief overview of the parametric transformations considered as well as revisions to
methods described in the first scientific report of this project [15].

The detailed testing procedure and test results are ~iven in Chapter 3.




2. Parametric Transformation and Data Reduction

The use of linguistic descriptors and heuristics is prevalent in the field of
seismology. First arrival phase, dominate frequency, event magnitude, event type, and
duration are a few of the descriptors obtained after an analysis of a seismic trace. All of
these descriptors are contingent upon the ability of a seismic expert. Parametric data is
extracted directly from the time series seismic waveforms and evaluated with neural
networks without a seismic expert in the evaluation process.

Parametric transformations are examined in this chapter. Several of these methods
were originally presented in the first scientific report on this project [15], but are included
here to reflect changes. The ARMA model is discussed in detail along with a revised
development of the fractal dimensions, sonograms, dominate frequency and moment
feature maps. Bispectrum analysis was tested along with some preliminary work with
fuzzy logic networks. In each case, some of the intermediate test results are presented.
More formal testing and results are detailed in Chapter 3.

A investigation of Fuzzy Logic was undertaken in hopes of exploiting some of the
heuristic rules. Linguistic rule maps are normally the basis of fuzzy logic inference. These
maps are now combined with Fuzzy Associative Memories (FAM) trained with moment
feature maps. The combination of both rule maps and FAM's effectively uses heuristics
and the extracted features from the seismic trace. The heunstics represent rules that a
seismic expert might use as a basis for classification decisions. The FAM's can be trained
with information embedded in the seismic trace that is not apparent or easily associated
with a meaningful descriptor.

2.1 ARMA Coefficient Modeling

Several of the heuristics stated in the first technical report [15] deal with the
dominant frequency of the first arrival wave of a seismic signal. These heuristics offer
information on local, regional, and teleseismic events only; no information is provided for
man-made events such as marine explosions or quarry blasts.

Many of the given heuristics are limited to natural events, additional information
must be provided for further discrimination of man-made events. One method of creating
this information is in generating the power spectrum for each seismic event. The power
spectrum may be obtained by processing the time series data through a FFT. However,
the resulting frequency data is as large as the original time data. As the original time series
contains 2400 points, the data size must be reduced since a 2400 point vector is
excessively large for neural network training and classification.

One method of retaining the frequency information while significantly reducing the
volume of data is in generating the ARMA filter coefficients. The ARMA filter is




designed from the time series data and can approximate the original frequency response
with a filter of proper order.

As the ARMA model significantly reduces the amount of data, it was decided to
include information pertaining to the frequency variation over time which is accomplished
by windowing the time series data. The process of widowing divides the data into a
specified number of consecutive segments. Each segment or time slice is usually of equal
size or duration.

2.1.1 ARMA Model Derivation

The time domain design problem can be stated as follows:

Given a sequence gn), n = 0, 1, ..., K, design a digital system of prescribed
degree such that its impulse response h(n) approximates g(n) as well as possible.

This problem arises as an unusual design task. In many cases, g(n) is the sampled output
of a continuous system. When this occurs, the unknown system is to be modeled by a
rational transfer function. The modeling of the system is very important. The modeling
procedure described here was named for Prony who developed it in 1795 for problems in
gas and hydro mechanics.

Let the transfer function H(z) be designed to be

.
k=0

H(z) - 3 A LES
1+ Z ak-z-k n=0
k=1

@2.1.1)

where p is an element of the set of natural numbers. Here, the order of the numerator and
denominator are assumed to be equal. First, the number of given values g(n) is chosen to
be equal to the number of coefficients to be determined. At least one recursive system
always exists, the impulse response of which satisfies exactly the condition

hn)=gm), n=0,1,. . K. (2.12)

Multiplying Eq. (2.1.1) by the denominator, substituting for Eq. (2.1.2), and
comparing the terms of equal order, you get the matrix equations shown below.
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The indicated partition in Eq. (2.1.3) leads to the pair of matrix equations
b=G,a (2.1.4a)
and
0=G,a (2.1.4b)
where G, is a (p+1) x (p+1) lower triangular toeplitz matrix, and
G,=[858 8l (2.1.4¢)

is a p x (p+1) rectangular matrix. Equation (2.1.4a) yields the vector b of the numerator
coefficients for any denominator such that the impulse response has the desired values for
n=0,1,..,p.

To calculate the denominator, we write Eq. (2.1.4b) as

O0=g +(g g 1%
=g +G3*a

wherea'=[a,, a,, ..., a, ]T is the vector of the unknown coefficients.
If G3 has rank p, we obtain
'=’G3-l * g] . (215)

Together with b from Eq. (2.1.4a) we then have all coefficients of H(z).




2.1.2 ARMA Coefficient Extraction

Once the method for creating the ARMA coefficients has been determined, the
next step is to implement the feature extraction. The Prony method as described above
handles ARMA modeling through matrix manipulation. At this point, the Matlab™
software package was chosen for feature extraction. Matlab is a software package which
was written for the processing of mathematical functions especially in its handling of
matrices. Direct implementation of the Prony method can be accomplished using the
prony command. The command format is

[b,a] = prony(h, nb,na)

where b = numerator coefficients in descending powers of z
a = denominator coefficients in descending powers of z
h = desired impulse response
nb = numerator order
na = denominator order.

After calculating the filter coefficients, the results are stored with the exception of
the constant 1 of the denominator. This constant 1, the a, term, was left out of the
training data since it would be the same for each signal and provided no significant
information to the neural networks for training or classification.

The next step in creating a reduced parametric data set is in determining the
number of windows and the filter order required to optimize neural network training and
classification. By varying both the number of windows and filter order between 2 and 6, a
series of 25 data sets were obtained. Each data set was divided into a 45/30 split, 45
signals for training and 30 signals for classification, then placed into a back-propagation
neural network for training and classification. Network training was limited to 1000
epochs before event classification.

Table 1 contains the window size and filter order testing. The data of highest
importance is the classification percentage. From Table 1, it can be determined that using
four windows and a fourth order ARMA model will provide the best training and
discrimination results.
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Table 1 Test Data for Determining Window Size and Filter Order

2

Filter Order

3 4

5

6

57/10

80/6.7/80/10

80/15

83/16

W

Number

78720

87/23|84/30

86/26

86/23

Windows

96 /13

93/22 {93/35

94 /30

90 /26

Lh

90/12

94/18 {92/20

93/22

93/22

94 /10

95/13

95 /12

94 /15

95/10

Note: Table formatis a/ b

where a is the training % and

b is the classification %.
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Figure 1 Windowed Frequency Response of Febmel6. W
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Figure 2 Frequency Response of the ARMA Model

A comparison of the frequency plots of the time series and ARMA model
demonstrates the information contained in the reduced parametric data. Figure 1 gives the
time series frequency plots for Febmel6.W over the chosen four windows. The resulting
ARMA filter frequency response plots are contained in Figure 2. A comparison of the
respective windows shows the ARMA model to contain the same frequency information
as the time series. The resulting ARMA plots are significantly smoother than the time
series plots. This is due to the time series plots being created from the actual frequency
information contained in the signal while the ARMA piots show the true frequency
response curve. The plots shown in Figure 1 and Figure 2 are normalized to a magnitude
of one (1) to eliminate any amplitude information. Elimination of amplitude information
can be justified as the original project intention was to determine the usefulness of
frequency information other than the frequency heuristic of the first arrival wave.

2.2 Fractal Dimension

Examination of various seismic traces suggests a self similarity between successive
windowed samples of each trace. Fractal dimension quantifies the self similanty of the
graphically presented waveform [64].

While viewed graphically, the waveform occupies a percentage of the two-
dimensional graphic space, but does not fill the entire graphic region. A completely filled
space (all of the graph colored black on white) would have a dimension of 2. A single line
spanning the domain of the graph would have a dimension of 1. The seismic waveform is
neither composed of a single line nor does it fill the entire graphic space. The waveform
will have a dimension somewhere between 1 and 2 [63].

The generalized case for a graphical object of M parts, each scaled by a ratio of r
(where r is the inverse length of the domain space) from the whole, would be




M=} 2.21)
where D is defined as the fractal dimension [10].
Solving for D

D=LogM / Log l/r. (222)

A single line spanning the domain of a qxq grid of points of a two-dimensional plot
would occupy a total of q grid points and the total graph would be scaled by a factor of
r = q. The fractal dimension for this line is then calculated as

D=Logq/Logq=1
which is the expected dimension of a single line.

Now if a waveform is given such that it occupies all grid points (Solid black
graph) for a total of qxq points, the fractal dimension would be

D=Logq?/Logq=2.
A fractal dimension of 2 represents complete coverage of the graph.

The fractal dimension of a seismic trace could be approximately calculated using
graphical means by plotting the waveform and counting the number of pixels it occupied in
a qxq gnd. IfM is the number of occupied pixels and g2 the total number of pixels in the
gnd, then the fractal dimension is given by

D=LogM/Loggq. (2.23)

For the data sets described in Appendix A, a typical fractal dimension value for seismic
waveforms was found to be centered around 1.3.

The graphical method of fractal dimension does not lend itself to processing large
amount of data quickly. The graphic process requires plotting of the seismic trace with a
second pass through the entire graphic area to sum the number of used pixels. A more
direct approach for determining fractal dimension can be implemented based on
approximation methods developed for fractal Brownian motion [63]. This method divides
a given waveform into N segments and calculates the total length of all the segments. The
fractal dimension can then be estimated based on the total waveform length.

Consider a seismic waveform of 2400 data points normalized to a domain of +
1200 instead of *1. The waveform is then plotted on a two-dimensional gnd of 2400 by

10




2400 points and can be used for direct calculation of the fractal dimension. The scaling
ratio r for N line segments of a seismic waveform with 2400 points becomes

r=1/(2400x2400)"2 = 1/2400.

The integer distance from one data point to the next data point is summed for a
total of the N points (or parts). This is considered the length of a normalized waveform.

N
Total length = 2 (1+ (N/2(x, - %,,))?)!"? (2.2.4)

k=2
The fractal dimension of the modified grid can be estimated for large N by [63]
D = Log (Total length) / Log (N). 2.2.5)

Using the modified grid of 2400x2400 as an example, the fractal dimension is
checked with a straight horizontal or vertical line trace of 2400 points. The total line
length in this case would be 2400.

D =Log 2400 / Log 2400 = 1

If a completely cluttered waveform is presented such that the total length is equal to the
maximum possible length of approximately 24002, the fractal dimension would be

D =Log 24002 / Log 2400 = 2.

Four variations of the grid dimension method were used for classification. The
first variation uses a square window, the number of horizontal and vertical grid elements
are equal. The second variation implements a rectangular window where the number of
vertical elements is greater than the number of horizontal elements. The third and fourth
variations high pass filter the signal before variations one and two are applied.

For each method used, the seismic signal is divided into several time slices,
windows, and a fractal dimension calculated for each window. This produced a series of
fractal values upon which a neural network was trained and tested for classification.

The neural network has a five neuron output. Each neuron denotes a specific type
of event. Since the output neuron values may vary between 0 and 1, the neural network
output is processed through a fuzzy rule set to determine final classification. The final
results of classification percentages may be seen in Table 2.
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Table 2

Fractal Dimension Classification Results

Fractal Dimension Method

Compass dimension

Grid Dimension - No filter
Square window
Rectangular window

Grid Dimension - High Pass Filter
Square window
Rectangular window

Classification

45.30%

4.00 %
8.00 %

14.67 %
16.00 %

Figure 3 Compass Dimension Method
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Figure 4 Grid Dimension Method

2.3 Sonegrams

The Sonogram is one method of extracting frequency data for presentation to the
neural networks for classification of seismic events. The first part of the procedure is to
normalize the seismic trace by dividing the entire segment by the largest magnitude in the
segment. Then, the seismic trace is "windowed" , divided into equally spaced segments of
the original trace size. For example in Subsetl, where all waveforms were 2400 samples
long, the trace was divided into 32 different segments. This produced 32 segments with
75 samples in each segment. The Fourier transform was taken of each window to created
a 3-dimension matrix where the dimension where window, frequency, and magnitude.
This array for Wave 1 of Subset 1 can be observed in Figure 5.

13
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The columns of this matrix are transposed and concatenated to form a single
vector from the larger matrix. This is performed on a the segment, waveforms, from the
database and presented to the network. This created a slight problem since the size of the
parametric data was large and cause longer computational time when presented to the
network. The routine was extracting too much data.

One method of solving this problem was to have less windows, and another was to
choose a method of finding the particular frequency that extract the most information.
Using the first method, we found that a 16 windows reduced the size of the data
adequately. The second method can be found in the dominant frequency section in this
paper.

A backpropagation algorithm was trained on the Subset 1 database with various
window sizes. One problem to be noted was that the offset, DC bias, of the waveforms
caused some error in the training of the sonogram data. This was due to the magnitude
difference of the Fourier transform and the DC offset. Therefore, the waveform mean was
subtracted from each segment to remove the offset. This enhance the classification of the
data to approximately 87% for the Subset 1 database.

14




2.4 Dominate Frequency

Heuristics cn seismic signals have presented rules which suggest that the dominate
frequency of the first arrival phase is an indication of the event type. The specific
heuristics are:

1. Cultural noise will have a dominate frequency above 1 Hz.

2. If the dominate frequency of the first arrival is below 2 Hz, then it belongs
to a teleseismic event.

3. If the dominate frequency of the first arrival is between 2 - 7 Hz,
then i belongs to a regional event.

4. If the dominate frequency is above 7 Hz, the it belongs to a local event.

The training data set from the Center for Seismic Studies has the start of the
seismic event aligned 30 seconds (600 samples at 20 Hz sampling rate) from the start of
the seismogram. The first arrival phase is generally considered to be within the first 30
seconds of the event wave train and contains the dominate frequency referred in the
heuristics listed.

There is no general agreement in the literature surveyed as to the exacting
definition of dominate frequency. The heuristics suggest division of the seismic trace into
frequency bands of 0 - 2 Hz, 2 - 7 Hz and 7 - 10 Hz. The data base uses a sampling rate
of 20 Hz for a span of 120 seconds. The event is aligned by the Center for Seismic
Studies data base manager such that the event start time occurs after 30 seconds of pre-
event noise. The dominate frequency as described by the heuristics, is only useful during
the first 30 seconds after the onset of the first seismic waves. Only sample numbers 600
through 1200 are in the first arrival window that gives the dominate frequency.

The algorithm used to extract the dominate frequency is given by:

1. Filter the seismic trace into 3 banks of signals with pass bands of 0-2 Hz,
2-7Hz and 7 Hz to 10 Hz.

2. Calculate the net energy in each band and threshold against some
minimum value above noise level.

3. Apply a simple comparison rules to generate grade of membership values

for the set:
{noise, low band, mid band, high band, no clear dominate frequency}
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Literature suggests that after the first 30 seconds of any given event, the dominate
frequency provides no clear indication of the event type. Only the first 30 seconds after
the onset of a seismic event contains useful dominated frequency information.

Currently, the two methods of identifying the dominant frequency of a signal are:

1. Band pass filter the signal and evaluate the power in each band, and

2. FFT the signal and sum the energy in each band.

The resulting mesh plots for these methods are shown in Figure 6 and Figure 7
respectively.

The neural network has a five neuron output to present the class type, one neuron
for each class. Each neuron ranges between 0 and 1 so, indeterminate levels may be
generated. The training results are shown in Table 3.

Table 3

Dominant Frequency Classification Results

Method Classification
Band Pass Filter 80.0%
FFT 88.0%

The Power vs. Frequency Plot of FEBME1.w

Magpnitude Axis

Time Axis

Figure 6 Dominate Frequency Band Pass Filter Fit Vector

16




The Dominant Feature Plot of FEBME1.W/

Magnitude Axis

Time AXis

Figure 7 Dominant Frequency FFT Fit Vector

2.5 Moment Feature Maps

One of the rewarding aspects of research is following a wisp of an idea that leads
to fruitful results. The calculation of mean and variances are typical signal processing
methods used in conjunction with seismology. Bispectrum analysis has been tentatively
explored by some researchers and the results suggest that the calculation of higher order
spectrums and cumulants may yield interesting and potentially useful results in seismic
classification. By following the suggested research, it was necessary to calculate higher
crder central moments as a prelude to cumulant calculations. Mesh plots of these
intermediate results (central moments) produced visually different plots of different classes
of seismic events. A key rule of thumb employed, but undocumented by neural network
researchers is; if you can visually distinguish different patterns graphically, it's is possible
to train a neural network to distinguish the same patterns. Through proper normalization,
a moment feature map is constructed with a normalized height < 1 for each window.

The general equation for the calculation of moment features is that of central

moments [62].

M, = I/m 2(x,-n,)P°
k

where n = moment number
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k = sample number

Figure 8 illustrates a moment feature plot of the quarry blast FEBQBO.w. The
occurrence of a strong high order moment corresponds to the peak energy of the quarry
blast. The right hand side of the plot shows the signal settling down to display wide sense
stationarity and possibly strict sense stationarity of the seismic activity after passage of the
quarry blast. The production code for moment feature generation is detailed in Chapter 5.

Moment Feature Map

Magnitude

Moment Window

Figure 8 Moment Feature Map of FEBQBO.w

2.6 Bispectrum

This aspect of the neural network investigation is to consider an alternate
preprocessing scheme on the raw data. We have taken the original waveform and
performed a cumulate operation. This result is then filtered and passed through an FFT.
The magnitude of the FFT is plotted and examined for characteristic and/or unusual
features.

The purpose behind this scheme is to obtain the bispectrum, which is useful in
detecting phase relationships between harmonically related components of random
process. We have assumed that such phase relationships may exist in the seismic signals
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due to the various propagation modes in the earth's crust, mantle, and core. We hope to
detect these relationships and use them to discriminate between the sources of these
seismic waves (in particular, we want to discriminate between the mechanisms generating
the seismic waves).

A first step in this analysis was to generate functions composed of two cosines of
different frequencies. The first function had no random phase relation. The second
function has a random phase of one cosine with the other by an amount in the range [-
0.1, +0.1]. The cumulates of each function were found. Then the corresponding FFT
were generated.

The results of this investigation clearly show the degradation of the bispectrum as
the amount of random phase is increased. The cosine without the random phase factor
still has visible components in the bispectrum.

2.7 Fuzzy Associative Memory

Two different FAM training methods were considered for use in the fuzzy seismic
processor. The first method superimposes successive rules on the same FAM. The
second generates a bank of FAM rules based on a method developed by Anderson referred
to as Brain State in a Box [48]. The superposition of FAMS and the Brain State in the
Box (BSB) were tested with results listed in Table 8.

The discussions of code segments in the remainder of this chapter make reference
to different variables. Table 4 contains a list variable names, symbols, and dimensions.

Table 4
Variable List

Variable Name Symbol Dimension Comments
Signal S, 1x2400 Seismic waveform
Window W, 100x24 Time slices
Moment Fox 1x10 Moment feature vector
M_Shift(k) M., 1x10 Fuzzy moment feature
Desired D, 1x3 Desired fit vector
Slice_Size L 1x1 Points /window = 100
Fam_Array FAM,, 10x3 Array of FAM rules

FAMC, 10x3 Composite FAM

B 1x3 Output fit vector

AM 10x3 FAM error

r Ix1 Learning Rate
w=1.20 20 total seismic waveforms.
k=1.24 24 time slices.
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2.7.1 FAM Superposition Method

The listing in Table S is a simple training method that superimposes fuzzy rules in
the same FAM. Each waveform input to the procedure is in a parametric form. Moment
features are used in this particular example as the parametric input. Along with the event
class, a fuzzy product between the moment feature and the desired event class is formed
for each of the 24 time slices. The product forms a single rule that is then superimposed
into the composite FAM. A total of 24 rules, one for each time slice, are generated. Only
a single training pass 1s needed to create the FAM.

The original seismic time series waveform is divided into a windowed time signal.
w,(1,j) = s,((i-1)*24+j)) i=1.24 j=1.100  (2.7.1)

Now using the moment feature map for the main parameter for this example with a mean
value of zero assumed

L
F() = (IIL) 2w (). n=1.10 2.72)
j=1

Normalizing the moment feature

M (n)=F (n)/Fmax. n=1.10 2.7.3)
where Fmax = max (F,(n)).
nk

At this point the parametric data is in proper form for FAM training using the
superposition of FAM's method. The fuzzy product of the feature vector transpose M,T
and the desired fit vector D, produces FAM, utilizing correlation minimum encoding
scheme. A total of 24 FAM's (one per time slot in this example) are formed for each
waveform.

FAM, = M,T o D, (2.7.4)

Now all the FAM's are summed on an element by element basis creating 24 composite
FAMs, each representing one time slice..

20
FAMC,(ij) = 0L FAM,,Gij) i=1.10  j=1.3 (2.7.5)
w=1

Implementation of this training scheme is shown in Table 5.. The code segment
begins by clearing out the FAM array. The array size is 24 windows by 10 moment
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features by 1 fit vector per moment feature. Each seismic waveform is loaded into the
program sequentially along with the desired class and is presented to the Find Moment
procedure. The Find_Moment procedure divides each seismic waveform into 24 windows
of 100 points. The mean value and central moments 2 through 10 are calculated for each
waveform and stored in a temporary matrix. The moments are then normalized and
passed to the Generate_Fuzzy Moment procedure. —The Generate Fuzzy Moment
procedure takes each normalized moment and generates a fuzzy grade of membership for
the entire moment matrix. At this point, the FAM can be formed with the fuzzy moment
feature matrix and the desired class vector.

The training scheme in Table 5 is based on the superposition of rules from each
waveform in the training set in the FAM. Each window of the moment feature matrix and
the desired classification form a rule. The outer most loop of the procedure Teach FAM,
loop j, loads one waveform in at a time. The waveform is converted into 24 fuzzy
moment feature segments. Each segment forms the basis of a single fuzzy rule by taking
the fuzzy product of moment feature m_shift and the classification vector Desired. The
rules are added to Fam_Array and the process continues to loop through the remaining
seismic waveforms. The training set of waveforms are only presented to the composite
FAM once.

This superposition method has worked well on an experimental basis for small
training subsets. When the number of training signals was less than 15 and the total
number of event classes equal to 3, the moment feature data was sufficient to give 100
percent classification of the remaining signals. As the number of training signals grew
beyond 15, all elements of the FAM were observed to approach a midpoint value of 0.5
and in some cases with more than 30 signals, elements of the FAM saturated with gradz of
membership values of 0 or 1.

Classification of seismic events using the trained FAM described is achieved with
the Classify procedure listed in Table 6. The data set to be classified is loaded in one at a
time and converted into parametric fit vectors. The fit vectors are then presented to the
vained FAM bank of 24 windows. The output of the rules are combined with unity
weighting factor, then defuzzified for the final classification.
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Table 5

FAM Training Code Segment

PROCEDURE Teach Fam IS

_ B ok ok o o ok ok ok ok o KK 3K o ok ok Kk K R oK R R K

BEGIN

FOR k IN 1..24 LOOP

Clear(Fam_Array(k));

END LOOP:--k

--Loop thru N waveforms
FOR j IN 1..20 LOOP

load_signal(j),
Find_Moment;
Generate_Fuzzy Moment;
-- Get the desired fit vector

Get_Desired(j),
-- FAM Filter

Now supenimpose all the FAM's
Recall that m_shift has the Parametric data
FOR k IN 1..24 LOOP
Fam_Array(k):=Fam_Array(k) +
transpose(m_shift(k))*Desired,
END LOOP;--k

END LOOP; --j all waves 1..N
END Teach Fam,

e 30 ok 2k ok o 3k ok o o ok ok ok 3k 3 3k ok 3 3k ke sk ok ok 3 3k 3k ok ok 3% ok %k 3K e 3K 3k sk 3k o o Ak 3 ok ok ok 3k ke ok ok ok

Classification with the trained FAM is straight forward. The fuzzv composition of
the parametric data M, from each time slice and the trained FAMC form the intermediate
output vector B, .

B, =M, - FAMC

All the time slices are passed through the FAMC and a composite output vector B is
formed by summing the individual output vector together.
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2
B= B, 2.7.8)
k=1

The composite output vector B is then defuzzified to obtain an output classification using

class = position (max(B)). (2.7.9)

Table 6
FAM Classification Code Segment

PROCEDURE Classify IS
o kkkkkkk Rk kkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkx
BEGIN

load_signal(j);

Find_Moments;

Generate_Fuzzy Moment;

Clear(B); -- B is the FAM filtered output

-- FAM Filter

FOR k IN 1. Num_Time_Slices LOOP
B:=B+moments(k)*Fam_Array(k),

END LOOP; --k

-- Output results
B:=B*(1.0/Cardinality(B)); -- scale B
pos:=max_fit(B);
Get_Desired(j),
IF Desired(pos)>0.5 THEN PUT("Correct ");
ELSE PUT("In-correct ");
END IF,
PUT(class);
END Classify;

%0k 3 3 3 ok o o e e 3 e 2k ok ok ok oK ok o ok ak ok ok ok 3k 3k ok 3k 3k sk ok ok 3k 3K 3k & 3k ok ok dk 2k sk ok o e e ke 3k ok ok ok ok ok

2.7.2 Brain State in a Box FAM Method

The Brain State in a Box is a second type of FAM that an be formed with
supervised training using the Widrow-Hoff training method for each FAM [3,49]. An
array of FAM's is created for each event class with 24 time slices representing the
members of each array. Supervised training is achieved by iterating through the entire
training set for a total of N epochs. The input vector is applied to the composite FAM and
forms a tentative output vector. The difference between this vector and the desired vector
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is calculated forming an error vector. The FAM is then updated with the fuzzy produce of
the error, input and the learning rate.

The training signal are presented to the main processing loop in a class random
order. This random ordering tends to increase the rate of learning. The FAM to be
trained is then formed by modifying the previous FAM values by adding AM.

FAM, (new)= FAM, (old) + AM (2.7.10)

The AM is calculated by taking a learning rate times the transpose of the difference
between the desired response and the current response all combined .through the
composition operator along with the current input.

AM = ro(D, - M, o FAM,)ToM, (2.7.11)

This procedure is continued in an iterative manner until the AM 1s reduced below some
prescribed limit or a specified number of epochs in training. In the testing for this
research, a 20 epochs was used for the termination of training criteria.

The procedure Classify in Table 6 takes the seismic waveform training set and
preprocesses it in a similar manner as the training procedure. The resulting fuzzy moment
feature matrix is presented to each of the 24 rules contained in the FAM by taking the
fuzzy product of the input variable moments and Fam_Array. The output of each rule is
combined into a composite output vector B. This vector B is then scaled by the reciprocal
of its cardinality then defuzzified using a maximum of the mean method.

Table 7
Supervised Training using Widrow-Hoff Rule
FORiIN 1.. 20 LOOP
Clear(FAM);
Clear(FAM_T)
r:= grade_of_membership(0.0),
q:= grade_of membership(1.0);

B(1):=r; -- Grade of membership = 0
FOR j IN 1..Number_Signals LOOP
Desired(1):=q; -- Set all classes to the same
Desired(2):=q; -- grade of membership
Desired(3):=q;
Desired(Signal_Class(j)):=T; -- reset correct class to 1

Tentative:=Signal(j)*FAM,;
FAM_T:=rate*Signal(j)*transpose((Desired-Tentative)),
FAM:=FAM +FAM T,

END LOOP; --j

END LOOP : -
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Referring to the code segment in Table 7, the outer most loop , loop i, allows for a
total number of epoch training passes set by the variable number _iterations. Each seismic
signal is assumed to be preprocessed and stored in the variable Signal upon entry into this
procedure. The desired classification vector is formed and a tentative output vector is
calculated with Fam_Array and Signal. This tentative output vector is then subtracted
from the desired class vector forming an error vector. The fuzzy product of the error
vector, the current input signal, and the learning rate are stored in Fam_T. This holding
vaniable, Fam_T, is correction matrix that is combined with the main FAM varable.
Termination of the training procedure is determined in Table 7 by the number of iteration
epochs. An alternate termination method could be implemented by calculating average
error between the desired and the tentative output vectors.

3 Comprehensive Testing

The comprehensive test series utilized a database generated from the GSETT
database. The test subset of 75 events are randomized in three different fashions, then
transformed into parametric data comprised of moment features, sonograms, fractal
dimension, ARMA models, and different combinations of parametric data. The parametric
data is then used to train backpropagation neural networks, supervised Kohonen, and
Radial Basis neural networks. Other type of neural networks were tested, such as the
recurrent neural network and supervised Kohonen, but not used in the final analysis due to
poor performance during network training. Training of the three neural network types
used typically yielded 100 percent training.

After the preliminary research was completed as to the type of parametric
transformations to further investigate, a general processing procedure was developed to
conduct systematic testing of the various schemes.

The general procedure follows:

Obtain data base
Search master database at CSS and generate 75 test signals
Download raw waveform data to PC computer via Internet
Create input seismic signal master list

Transform raw seismic waveforms into parametric data
Read stored wave form from disk drive
Collect some statistics as signal is input
Normalize Data
Optional filtering if desired
Apply transformation
Form composite parametric data file

Create randomized data files for training and testing
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Generate three random groupings of all 75 waveforms for training
Generate 10 random files with 30 training and 45 testing signals
Generate 10 random files with 45 training and 30 testing signals

Apply parametric data to neural network

Report results
Tabulate individual training and testing results
Compile statistical averages

3.1 Definition of Parametric Data Types

All data files (*.dat) were obtained from the master database and contain a total of
seventy five (75) seismic signals. Each signal consist of 2400 data points sampled at
twenty (20) Hertz. Each * dat file is randomized twenty three different ways using a
MatLab M file named reorder.m. The source listing of M files are found in the project
software report [15). The first three files of each set are named RG(1-3)??.prm. All 75
signals are used as training data. The next ten files are named SP(1-10)???.prm. The files
are split into 30 training signals and 45 test signals. The last ten files are named SP(11-
20)?7?.prm. These file were created by using the last forty five signals as training data and
testing on the first 30.

Data Points  Classes * prm file names

ARMA DAT 144 5 77?7A1.prm
ARMAS DAT 144 3 777A2 prm
COMBOI1.DAT 21 5 977K 1.prm
FRAC1.DAT 40 5 ??77F3.prm

MOMENTI1.DAT 240 5 777MS5.prm
MOMENT2.DAT 120 5 777M2.prm
SGX.DAT (sonogram)114 5 777S1.prm

Al -  Auto Regressive Moving Average (ARMA). Data was separated into 28
rectangular time windows. Al contains five output classes, local, regional,
teleseismic, marine explosion, and quarry blast.

A2 - Same algorithm as A1 but with only three output classes. These consist of marine
explosions, quarry blast, and natural events.
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CO1 - Type 1 events (quarry blast) were discriminated against all other events. The
COl files were created by regrouping the classes in Combol.dat. Combol.datis a
dernvation of Kludgel .dat.

CO2 - Type 2 events (local) were discriminated against all other events. CO?2 files were
created in the same manner as CO1.

K1 - Kludge number 1. A combination of other parametric types according to known
heuristics. Details of parametric content were described earlier.

K1* K1 data run on a backpropagation network with two hidden layers. The network
architecture is 21-12-10-5 as opposed to the K1 runs which used 21-10-5.
M2 Moment feature extraction 2. Data contains five output classes.

MS5- Moment feature extraction 5. Data is divided into 24 time windows with 10
features each. Data contains five output classes.

S1-  Sonogram 1. This routine performs a 32 point fast Fourier transform on each of
38 windows. Data contains five output classes.

3.2 Combination Experiments

A combination of ARMA coefficients, signal duration, fractal dimension and
moment features were used to form a composite data set. Many different combination
were tested but only two variations provided reasonable results. The K1 and K11 series
were extensively tested to provide a statistical basis with the results reported in the test
summary. The general procedure for generating the K1 test set is outlined below. The
source code listing is found in the companion software documentation.

Four non-overlapping intervals divide the 2400 sample signals (20 Hz sampling
rate) into 30 second windows. Based on several heuristics suggested by the literature
search and experimentation, the different transforms were formed according to the
following algorithm. Note that the raw seismic waveform data is stored in the array 'data’.

First form the four non-overlapping windows from the raw seismic waveform.

winO=data(1:600) first 30 seconds - no seismic event present
winl=data(601:1200) second 30 seconds, assumed to be the P wave
win2=data(1201:1800) third 30 seconds

win3=data(1801:2400); last 30 seconds
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Now calculate a second order ARMA model based on the first 30 seconds of data. This
corresponds to winl since each seismic waveform contains 30 seconds (win0) of pre-event
samples.

Calculate ARMA coefficients of the expected P Phase that should occur in winl.
[AN,AD]}=prony(winl,2,2) Prony method is used for ARMA.

Now estimate the duration of the seismic event by comparing the squared sum of each
window to a threshold set to 150% of the first window (win0).

Threshold=1.5*sum(win0. *win0);
winlsq=sum(winl.*winl);
win2sq=sum(win2.*win2),
win3sq=sum(win3.*win3),

Duration=0;
-- Compare the windows to the threshold
if winlsq > Threshold then Duration = Duration + 1,

else if win2sq > Threshold then Duration = Duration + 1;
else if win3sq > Threshold then Duration = Duration + 1;
end;

Now find the fractal dimension, the frac2 procedure is the estimated method discussed
earilier in this report.

fd = frac2(win0),

fd1 = frac2(winl) - fd;

fd2 = frac2(win2) - fd,

fd3 = frac2(win3) - fd;

The first five central moments of each windows 1 through 3 are now computed.
momen(1,:) = abs(moment(winl,5)); '
momen(2,:) = abs(moment(win2,5));,
momen(3,:) = abs(moment(win3,5));

-- Renormalize the moment data.
momen = momen/(max(max(momen)));

Finally the parameter array is formed with the calculated values
data_out(current_file,;;))=  [AN AD(2:3) Duration fd1 fd2 fd3 ...
momen(1,2:5) momen(2,2:5) ...
momen(3,2:5));
Note that the denominator of the ARMA coefficients is normalized such that the

first coefficient has a value of 1.0. This coefficient adds no information to the neural
network and is discarded by specifying two of the three ARMA denominator coefficients.
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The windowing of signals generally will incorporate a given amount of overlap
between successive windows. A SO percent overlap is not uncommon. For the
combination described above, as well as most of the other methods used in this research,
the amount of successive window overlap did not significantly change the level of neural
network training and subsequent testing. Significance being defined as a S percent or less
difference in neural network training.

A variation of the K1 training set was created that redefined the output classes.

Various ways of reclassifying the seismic signals were attempted on a trail basis from the
K1 data set.

3.3 Combination Experiment Summary

The K1 combination data initially trained at the 100 percent level and classified
new data at an average of 40 percent over the 20 random variations. Additional training
and testing was performed to determine the sensitivity of the neural network to the
different classes of input data. Several variations of the K1 data were tested. The results
of are listed below.

Backpropagation Neural Network Setup

Number of data records 75
Training Records 30
Classification records 45
Input Layer 21 neurons
First hidden layer 12 neurons
Second hidden layer 10 neurons
Learning rate 0.2
Momentum 0.05

Class Type

1 Marine Explosion

2 Local

3 Regional

4 Teleseismic

5 Quarry Blast
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Test Summary

Variation Classes Percent Percent
Training Classification

SP1IN2 (Class 3 removed)

Natural 100.00% 88.24%

Man_Made 91.67% 33.33%
SPIN3 (Class 3 removed)

Class 1 83.33% 33.33%

Class 2 75.00% 27.27%

Class 4 100.00% 50.00%

Class 5 100.00% 44 .44%
SP1TC(Class 3 removed)

Class 1 83.33% 55.56%

Class2 & 4 100.00% 88.24%

Class 5 100.00% 22.22%
SP1E1 (Classes 2,3 & 4 removed)

Class 1 100.00% 55.56 %

Class 5 100.00% 88.89%
SP1DD Class 3 removed

Class4 & 5 100.00% 46.67%

Class 1&2 100.00% 50.00%

SP13C2(Class 3 verses all others)
Class 1,2,4,5 100.00% 88.00%
Class 3 90.00% 100.00%

3.4 BiSpectrum Experimental Results

The next aspect of the investigation was to look at the BiSpectrum of the seismic
waveforms . Here it turned out that the major contribution to the bispectrum of each
waveform was the DC or near DC components (even though the means are subtracted
from the waveforms before the cumulates are found). The bispectra came in arrays of 121
x 121. It was decided to concentrate on the 10 x 10 grid area for the lowest frequencies.
To aftain greater resolution, the cumulates were found on a 201 x 201 grid. The
BiSpectrum source code can be found in the software documentation [16].

A backpropagation neural network was used to test the BiSpectrums of all 75

seismic signals. Forty five signals were used for training purposes and 30 signals used for
testing. The network summary is given below.
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Network: Back Propagation

Input Data
Waveform File Name.
Number of Data Records
Number of Training Records
Number of Testing Records
Number of Training Epochs
Number of Network Layers
Number of Neurons Per Layer
Learning Rate Delta
Momentum
Termination Error
Saving Weight in
Computer

Training Summary

Run Date: 8/02/1993
SP1BS2 PRM

75

45

30

38044

3

55 20 5

0.2000

0.1000

0.000E+00
SP1IBS2.BWT

20 MHz IBM PS2 Model 70

Training Threshold 0.7000
Training Threshold Difference. 0.2000
Average Time Per Epoch.(sec) 5.16
Ave. Error 3.324E-02
Max. Error 3.076E-01
Min. Error 2.216E-08
Percent Correct 39/45 = 86.67
Output Class Percent
0 1 2 3 4 5 Correct
\
1] 2/7 5/7 07 07 07 07 7143
Input 2| 09 09 99 0/9 09 09 100.00
3 09 09 09 99 09 0/9 100.00
4 | 3/10 0/10 0/10 0/10 7/10 0/10 70.00
5| 1/10 0/10 0/10 0/10 0/10 9/10 90.00
Classification Summary
Classification Threshold 0.7000
Classification Threshold Difference 0.2000
Percent Correct 5/30 = 16.67
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Output Class Percent
0 1 2 3 4 5 Correct

4/8 1/8 0/8 0/8 1/8 2/8 12.50
3/6  0/6 /6 1/6 1/6 0/6 16.67
2/6  0/6 /6 /6 206 0/6 16.67
/5 0/S 0/ 0/5 1/5 2/5  20.00
2/5 0/S 05 05 25 /s 20.00

Input

(7 T “O P S I

Although some of the classes trained at the 100 percent level, the classification of
the test set exhibited results comparable to random guessing. Variations on this basic
scheme failed to yield any improvement.

3.5 Fuzzy Logic Experimental Results

Two different seismic test sets were used to train and classify the fuzzy seismic
processor. The first data set was comprised of 20 signals from the KAF station located in
Kangasniemi, Finland. This data set contained 20 signals with three event types including
quarry blast, local and regional events. A second data set with a diversity of recording
stations was constructed with 75 discrete events, 15 events of type local, regional,
teleseismic, quarry blast, and marine explosion. Both data sets are listed in Appendix A.
Each data set was tested using the superposition of FAM rules as well as the Brain State
in the Box scheme. Table 8 summarizes the results.

The data set formed from events recorded at the single station KAF was applied
with all 20 signals used for training. Both FAM methods achieved 100 percent correct
results. The data set was next split into 12 training signals and 8 classification signals.
Once again, 100% training was achieved with 100 percent correct classification.
Additional testing not reported in Table 8, shows that for this set of signals, only the
moment feature need be used as the sole parametric data input to the system for 100
percent classification. These perfect results are not to be generalized; they were obtained
only due to the small size of the test data set.

The multiple station test used a total of 75 test signals with 5 different event types.
When all 75 signals were used for training the superimposed FAM scheme, the element
values of the FAM approached a midpoint value of 0.5. No learning was possible with
this larger data set, the superposition FAM was not an effective strategy. After splitting
the multiple station data set into 40 training signals and 35 classification signals, a small
amount of learning with the superimposed FAM occurred but remained below the level of
random guessing (< 33 percent). Only 5 percent of the signals classified as correct using
the superimposed FAM scheme. Examination of the values internal to the FAM's showed
that each element was approaching a midpoint value of 0.5.
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The multiple station 40/35 split data set was applied to the FAM event bank using
FAM'S formed with the Brain State in the Box. Training of this data set was at a 100
percent correct level while classification performed at a slightly lower level with 67
percent correct classification. The training rate of the multiple station data set with the 75
signals, was at the 53 percent correct level. These results were obtained after
considerable "tweeking" of the fuzzy logic parameters.

Table 8

Training and Classification Results

Database Superposition of Time Slices Brain State in Box
Training Classification Training Classification
Single Station 100% 100% 100% 100%
12/8 split
Single Station 100% n/a 100% n/a

20 signals train

Multiple Stations 11% 5% 100% 53%
40/35 split

Multiple Stations n/a n/a 63% n/a
75 signals train

The high percentage of learning rates presented in Table 8 seems to indicate
extremely good results. Indeed, for the two databases tested the results were good. It
should be noted that seismic classification with neural networks often approaches 95
percent to 100 percent . Studies by Dowla [27] and Dysart [28] indicate results in this
range. The results typically reported in neural network studies are for bivalent cases. The
results presented here are for 3 class (20 signal set) and 5 class (75 signal set) cases.
Direct comparison to results obtained with neural network techniques are not practical
due to the extensive amount of learning parameter adjustment within the fuzzy logic
scheme. Again it should be noted that the fuzzy logic method was fine tuned to yield
good results. Additional investigation is required for development of a system that does
not require tuning.
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3.6 Test Series Results

Table 9, 10, and 11 give the compiled results of each parametric data file. The

percentages are the average of twenty different randomization's. Individual test results are

listed in Appendix C.

Table 9 Back Propagation

Parametric Data
Al
A2
Co1
CO2
F3
K1
K1*
K11
M2
M5
S1

Table 10

Parametric Data
Al
A2
COl1
C0O2
F3
K1
K11
M2
M5
S1

Trained (%) Tested (%)

96.2

99.5

993

99.73
84.39
95.95
97.39
96.17
94.72
99.17
99.45

14.15
41.34
79.33
69.6

34.39
40.61
42.06
38.78
15.06
19.11
15.28

Kohonen Test Results

Trained (%) Tested (%)

99.67
99.39
92.06
90.22
88.11
92.61
91.00
99.34
99.67
94 .28
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39.56
61.22
78.94
74.11
41.17
44.50
43.62
26.28
24.11
29.45

Average (%)
55.35
70.42
89.33
84.67
59.39
68.28
69.73
67.48
54.89
59.14
57.36

Average (%)
69.61
80.31
85.50
82.11
66.14
68.56
67.31
62.81
61.89
61.86




Table 11 Radial Basis Test Results
Parametric Data Trained (%) Tested (%)  Average (%)

Al
A2
CO1
C0o2
F3
Kl
K1l
M2
M5
S1

3.7 Training Times

100.00 3133 65.67
100.00 58.11 79.06
100.00 75.5 87.75
100.00 75.39 87.69
100.00 40.18 70.09
100.00 38.11 69.06
100.00 40.28 70.14
100.00 26.83 63.42
100.00 25.61 62.81
100.00 235 61.75

Several PC class machine were used to train and test the various parametric
transformations. Records of the training time per epoch verses the type of computer was
part of the summary data from the SeisNet software. The training times of each neural
network and the number of features are noted below.

Input
Features
240

144

120

114

40

21

Training
Records
75
30
45
75
30
45
75
30
45
75
30
45
75
30
45
30
45

Table 12 Backpropagation Networks Training Times

(sec/epoch)
486-50 Mhz 486-66 Mhz 386-20 Mhz
24.52 22.08
8.00 7.19
14.59 13.28
10.77 7.78 76.24
4.23 28.10
7.43 5.55 41.24
5.16 5.47

1.58 16.85

3.82 24.79
6.40
2.53 19.40
3.82 29.29
0.91 0.73
0.42 2.52
0.63 0.52 3.79
0.19 0.93
0.29 1.49
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e
Table 13 Kohonen Network Training Times
(sec/epoch)
Input Training
Features Records 486-50 Mhz 486-66 Mhz 386-20 Mhz
240 75 10.62
30 28.06
45 42.25
144 75 6.18
30 2.37 17.31
45 3.49 262 26.53
120 75 6.71 4.87
30 1.95 18.59
45 3.73 25.50
114 75 5.03
30 1.81 15.00
45 3.18 22.71
40 75 0.83
30 0.37 2.31
45 0.49 0.39 3.49
21 75 0.31
30 0.13 0.87
45 0.26 1.29

Note: All computers were not used for all test series.




Input
Features
240

144

120

114

40

21

Table 14 Radial Basis Network Training Times

Training
Records
75
30
45
75
30
45
75
30
45
75
30
45
75
30
45
75
30
45

(sec/epoch)

486-50 Mhz
3.44
0.56
1.23
1.86
0.37
0.74
1.63
0.34
0.67
1.35
0.29
0.55
0.78
0.20
0.35
0.40
0.15
0.20

Note: All computers were not used for all test series.
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4. Summary

The research focused on identification and collection of a suitable database,
identification of parametric representation of the time series seismic waveforms, and the
training and testing of neural networks for seismic event classification. It was necessary to
utilize seismic events that had a high degree of reliability for accurate training of the neural
networks. The seismic waveforms were obtained from the Center for Seismic Studies and
were organized into smaller databases for training and classification purposes.
Unprocessed seismograms were not well suited for presentation to a neural network
because of the large number of data points required to represent a seismic event in the
time domain. The parametric representation of the seismic events in some cases provided
adequate information for accurate event classification, while significantly reducing the
minimum size of the neural network. Various networks have achieved classification rates
ranging from 88% classification of a three class problem to 75% for the S class problem.
The results vary dependent on the number of classes and the method of parametric
transformations utilized. Multiple tests were performed in order to statistically average
the training and classification rates. Test summaries were presented in Chapter 3 and
individual test results are given in Appendix B.
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE
Febmel.w ARU bz 1991119
Febmel6.w ESLA sz 1991114
Febmel7.w ESLA sz 1991114
Febmel8.w ESLA sz 1991135
Febmel9.w ESLA sz 1991135
Febmed3.w GAR bz 1990051
Febmed45.w GAR bz 1991124
Febmed7.w GAR bz 1991139
Febmed48.w GAR bz 1991141
Febmed9.w GAR bz 1991146
FebmeS5.w KIV bz 1991133
FebmeS6.w KIV bz 1991146
Febme65.w OBN bz 1991139
Febme66.w OBN bz 1991144
Febme67.w OBN bz 1991146
FebrO.w GRAl bz 1990331
Febro.w GRA1 bz 1991117
Febr15.w GRAL1 bz 1991127
Febr21l.w GRAl bz 1991136
Febrd6.w WRA sz 1990331
Febr52.w WRA cb 1991114
Febr58.w WRA cb 1991119
Febr66.w WRA cb 1991121
Febr72.w WRA cb 1991129
Febr86.w WRA cb 1991141
Febroo.w WRA cb 1991143
Febr103.w WRA cb 1991147
Febr109.w WRA cb 1991151
Febr112. w WRA cb 1991152
Febrl1s.w WRA cb 1991153

NOTE: All signals are 2400 samples at 20.00 samples per second.

47




APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE
Febta2S.w GRALl bz 1991132
Febta52.w WRA sz 1990123
Febta69.w WRA sz 1990334
Febta78. w WRA sz 1990335
Febta81.w WRA sz 1990335
Febta86.w WRA sz 1990051
Febta97.w WRA sz 1990065
Febtal 50.w WRA cb 1991114
Febtal77 w WRA cb 1991118
Febta229. w WRA cb 1991121
Febta309.w WRA cb 1991125
Febta317.w WRA cb 1991125
Febtad08.w WRA cb 1991133
FebtaS13.w WRA cb 1991137
Febta542 w WRA cb 1991138
Febla0.w BJT sz 1991147
FeblaS.w GAR bz 1991115
Febla7.w GAR bz 1991117
Febla8.w GAR bz 1991119
Febla9.w GAR bz 1991145
Feblall.w GRAl bz 1991112
Feblal3.w GRAI bz 1991116
Feblal16.w GRAl bz 1991122
Feblal9.w GRAI bz 1991149
Febla20.w HFS sz 1991135
Febla26.w HFS cb 1991135
Febla73.w WRA cb 1991137
Febla75.w WRA cb 1991143
Febla76.w WRA cb 1991143
Febla82 w WRA cb 1991146

NOTE: All signals are 2400 samples at 20.00 samples per second.
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN
Febqb0.w ASAR cb
Febgbl2.w CTA bz
Febqb20.w CTA bz
Febqb33.w KAF sz
Febgb45.w KAF sz
Febqb93.w KAF sz
Febgb100.w KAF sz
Febgbl14.w KAF sz
Febqb117.w KAF sz
Febgb118.w KAF sz
Febgbl122.w KAF sz
Febgb147.w KAF sz
Febgbl154.w KAF sz
Febgb158.w STK bz
Febqb180.w WRA cb

NOTE: All signals are 2400 samples at 20.00 samples per second.
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1991123
1991123
1991141
1990331
1991114
1991133
1991135
1991140
1991140
1991140
1991142
1991150
1991154
1991121
1991141




APPENDIX A GSETT-Subsetl Station Names and Locations

STA  STATION NAME LATITUDE LONGITUDE
ARU  ARTI - SVERDLOVSK, OBLAST 56.4000 58.6000
ASAR ALICE SPRINGS ARRAY - NORTH TERRITORY. AUSTRALIA 23.7040 133.9620
BJT  BAUIATUAN - BAIJIATUAN, CHINA 40.0403 116.1750
CTA  CHARTERS TOWERS - QUEENSLAND, AUSTRALIA 20.0880 146.2540
ESLA SONSECA ARRAY STATION - SPAIN 39.6700 -3.9600
GAR  GARM - GARM, USSR 39.0000 70.3000
GRA1 GRAFENBERG ARRAY - BOYERN, GERMANY 49.6920 11.2220
HFS  HAGFORS ARRAY - SWEDEN 60.1335 13.6836
KAF  KANGASNIEMI - FINLAND 62.1127 26.3062
KIV  KISLOVODSK - WESTERN CAUCASUS USSR 43.9500 42.6833
OBN OBNINSK - OBNINSK, USSR 55.1167 36.5667
STK  STEPHENS CREEK - NEW SOUTH WALES. AUSTRALIA 31.8820 141.5920

WRA WARRAMUNGA ARRAY - NORTH TERRITORY. AUSTRALIA -19.7657 134.3891
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APPENDIX B Detailed Test Results

Back propagation Neural Network Trainin3 Data
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Neural Network Testing Data

F3

Neural Network Training Data
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Neural Network Testing Data

F3

Neural Network Training Data
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Al TESTING

Suprervised Kohonen TRAINING
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TESTING

Al

TRAINING

Suprervised Kohonen
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Suprervised Kohonen
Class 0 1
SPI 1 0 5
2 0 0
3 0 0
SP2 1 0 3
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TESTING
Class
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Suprervised Kohonen
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TESTING
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Suprervised Kohonen TRAINING
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TESTING
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Suprervised Kohonen TRAINING COl TESTING

0o 1 2 TOTAL % CORR 0 1 2 TOTAL % CORR
SP11 1 0 2 7 9 2222% SP11 1 0 1 5 6 1667%
2 0 0 36 36 100.00% 2 0 2 22 24 9167%
3 0 0 O 5 100.00% 3 51 0 10 20.00%
4 0 0 0O 9 100.00% 4 4 0 1 6 1667%
5 0 0 0 6 100.00% 5 3 1 3 9 0.00%
SPi2 1 0 8 4 12 66.67% SPI1I2 1 0 1 2 3 3333%
2 0 1 32 33 96.97% 2 01 26 27 96.30%
3 0 0 o0 6 100.00% 3 4 0 O 9 55.56%
4 0 0 O 7 100.00% 4 4 1 2 8 0.00%
50 0 0 8  100.00% 5 0 0 1 7 0.00%
SPI3 1 0 3 ¢ 9 3333% SP13 1 0 2 4 6 3333%
2 0 0 36 36 100.00% 2 0 0 24 24 100.00%
3 0 00 S 100.00% 3 6 0 0 10 20.00%
4 0 0 O 4 100.00% 4 7 0 O 11 18.18%8%
50 0 0 9 100.00% 5 4 0 0 6 3333%
SP14 1 0 6 4 10 60.00% SPI4 1 0 2 3 5 40.00%
2 0 0 35 35 100.00% 2 0 2 23 25 92.00%
3 200 4 50.00% 3 5 0 2 11 27.27%
4 0 0 O 7 100.00% 4 5 1 2 8 0.00%
5 3 10 8 50.00%
5 0 0 ¢ 7 100.00%
SPI5 1 0 7 4 11 63.64% SPIS 1 0 0 4 4  0.00%
2 0 0 34 34 100.00% 2 0 1 25 26 96.15%
3 1 0 0 7 8571% 3 5 0 0 8 37.50%
4 0 0 O 4 100.00% 4 6 0 2 11 9.09%
5 0 0 0 7 100.00% 5 3 0 2 25.00%
SPI6 1 0 5 5 10 50.00% SPI6 1 0 0 5 5 0.00%
2 0 0 35 35 100.00% 2 0 0 25 25 100.00%
3 0 0 o0 6 100.00% 3 4 0 2 9 3333%
4 0 0 O 6 100.00% 4 3 0 2 9  0.00%
5 0 0 o0 7  100.00% S 2 0 2 8 37.50%
SP17 1 0 9 2 11 81.82% SPI7 1 0 2 2 4  50.00%
2 0 0 34 34 100.00% 2 0 4 22 26 84.62%
3 1 06 o 3 66.67% 3 8 0 2 12 8.33%
4 0 0 O 8 100.00% 4 2 0 3 7 14.29%
S 06 0 O 7 100.00% 5 4 0 3 8 12.50%
SPI8 1 0 10 2 12 83.33% SPI8 1 o0 1 2 3 3333%
2 0 1 32 33 96.97% 2 0 5 22 27 81.48%
3 1 0 o 6 8333% 3 3 01 9 55.56%
4 0 0 O 6 100.00% 4 7 0 1 9 11L.11%
5 0 0 O 8 100.00% 5 3 0 4 7 0.00%
SP19 1 0 6 4 10 60.00% SPI 1 o0 2 3 5 40.00%
2 0 1 34 35 97.14% 2 0 9 16 25 64.00%
3 2 0 o0 5 60.00% 3 6 0 3 10 10.00%
4 1 0 0 5 80.00% 4 6 0 4 10 0.00%
5 0 0 O 8 100.00% 5 5 0 1 7 14.29%
SP20 1 0 2 S 7 28.57% SP20 1 0 1 7 8 12.50%
2 0 0 38 38 100.00% 2 0 0 22 22 100.00%
3 0 0 0 7 100.00% 3 110 8 62.50%
4 0 0 0 7 100.00% 4 4 2 0 8 12.50%
5.0 0 0 3 100.00% 5 6 1 1 12 833%

68




sSuprervised Kohonen TRAINING
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TESTING
Class
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TOTAL % CORR
11 9.09%
34 8235%
10 20.00%
6 166T%
9 0.00%

9 0.00%
36 94.44%
9 55.56%
8 0.00%
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9 3333%
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Suprervised Kohonen TRAINING
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Suprervised Kobonen TRAINING
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Suprervised Kobonen TRAINING
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S. Kohonen
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Al

Radial Basis Neural Network Testing Data

Al

Radial Basis Neural Network Training Data
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Radial Basis Neural Network Training Data Radial Basis Neural Network Testing Data
K1 Kl
Input Class Output Class Input Class Output Class
0 1 2 3 4 5 TOTAL %CORR 0 1 2 3 4 5 TOTAL%CORR
SPI1 0 6 0 0 0 0 6 100.00% SPI1T 0 3 2 0 3 1 9 3333%
2 0 0 4 0 0 0 4 100.00% 2 0 0 6 1 3 1 11 5455%
3000 5 0 0 5 100.00% 3.0 1 1 5 1 2 10 50.00%
4 0 0 0 0 9 0 9 100.00% 4 01 2 0 2 1 6 3333%
5 0 0 0 0 0 6 6 100.00% S 0 0 4 0 2 3 9 3333%
SP21 0 3 0 0 0 0 3 100.00% SP21 0 5 1 2 4 0 12 4167%
2 0 0 6 0 0 0 6 100.00% 2 001 2 4 2 9 11.11%
30 00 6 0 0 6 100.00% 3.0 2 05 1 1 9 555%
4.0 0 0 0 7 0 7 100.00% 4 0 0 0 0 5 3 8 6250%
5 0 0 0 0 0 8 8 100.00% S 001 1 1 0 4 7 57.14%
SP31 0 6 0 0 0 0 6 100.00% SP31 0 7 0 1 1 0 9 77.78%
2 0 0 6 0 0 0 6 100.00% 2 01 4 3 0 1 9 4444%
300 0 5 0 0 S5 100.00% 301 0 7 1 1 10 7000%
4 0 0 0 0 4 0 4 100.00% 4 0 3 3 1 3 1 11 2727%
5 0 0 0 0 0 9 9 100.00% S 0 1 1 0 2 2 6 3333%
SP41 0 5 0 0 0 0 S 100.00% SP41 0 4 0 2 4 0 10 40.00%
2. 0 0 7 0 0 0 7 10000% 2 0 1 1 3 2 1 8 1250%
30 00 4 0 0 4 100.00% 30 21 8 0 0 11 7273%
4 0 0 0 0 7 0 7 100.00% 4 03 3 0 1 1 8 125%
5 0 0 0 0 0 7 7 100.00% 5 0 2 1 3 0 2 8 25%0%
SPS1 0 4 0 0 0 0 4 100.00% SPS1 0 S5 3 3 0 0 11 4545%
2 0 0 8 0 0 0 8 10000% 2 01 2 2 2 0 7 2857%
300 0 7 0 0 7 100.00% 300 0 8 0 0 8 10000%
4 0 0 0 0 4 0 4 100.00% 4 0 1 S 1 1 3 11 909
5 0 0 0 0 0 7 7 100.00% 5 0 0 3 0 0 5 8 6250%
SP61 0 5 0 0 0 0 S5 100.00% SP61 1 3 0 0 2 4 10 30.00%
2 0 06 0 0 0 6 10000% 2 01 21 4 1 9 2222%
3000 6 0 0 6 100.00% 30 0 4 4 0 1 9 4444%
4 0 0 0 0 6 0 6 100.00% 4 0 1 2 0 3 3 9 3333%
5 0 0 0 0 0 7 7 10000% 5 0 0 3 0 2 3 8 37.50%
SP71 0 4 0 0 0 O 4 100.00% SPT1 0 2 0 0 8 1 11 1818%
2 0 0 8 0 0 0 8 100.00% 2.0 21 0 1 3 7 1429%
3000 3 0 0 3 10000% 3.1 1 1 6 1 2 12 5000%
4 0 0 0 0 8 0 8 100.00% 4 0 01 0 6 0 7 8.71%
S 00 0 0 0 7 7 10000% 5.0 1 0 0 3 48 50.00%
SP81 0 3 0 0 0 O 3 100.00% SP81 0 2 1 1 7 1 12 1667%
2 00 7 0 0 0 7 10000% 2 0 2 2 0 3 1 8 2500%
3000 6 0 0 6 100.00% 30 2 06 1 0 9 6667%
4 0 0 0 0 6 0 6 100.00% 4 0 0 3 0 5 1 9 555%
5 0 0 06 0 0 8 8 10000% 5.0 1 3 0 1 2 7 2857%
SP91 0 5 0 0 0 0 5 100.00% SPP1 0 6 1 0 1 2 10 60.00%
2.0 07 0 0 0 7 10000% 2 0 3 40 0 1 8 5000%
300 0 5 0 0 5 100.00% 30 51 3 0 1 10 3000%
4 0 0 0 0 S 0 S5 10000% 4 0 2 4 0 0 4 10 000%
5 0 0 0 0 0 8 8 100.00% 5 0 3 2 0 0 2 7 2857%
SPIO 1 0 8 0 0 0 0 8 100.00% SPIO 1 0 2 1 4 0 0 7 2857%
2 0 0 5 0 0 0 5 10000% 2.0 1 1 2 4 2 10 1000%
300 0 7 0 0 7 100.00% 30 2 05 0 1 8 6250%
4 0 0 0 0 7 0 7 10000% 4 0 2 0 1 4 1 8 5000%
5.0 00 0 0 3 3 100.00% 5.0 3 1 2 2 4 12 3333%
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Radial Basis Neural Network Testing Data
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Radial Basis Neural Network Training Data
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Radial Basis Neural Network Testing Data
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Radial Basis Neural Network Training Data
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Radial Basis Neural Network Testing Data

M3

Radial Basis Neural Network Training Data
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Radial Basis Neural Network Training Data Radial Basis Neural Network Testing Data
St s
Input Class Output Class Input Class Output Class
0 1 2 3 4 S TOTAL %CORR 0 1 2 3 4 5 TOTAL %CORR
SPI1 0 6 0 0 0 0 6 100.00% SPI1 3 1 1 0 3 1 9 1L11%
2 0 0 4 0 0 0 4 10000% 2 4 2 0 0 2 3 11 0.00%
3000 5 0 0 5 10000% 35 0 1 0 3 1 10 0.00%
4 0 0 0 0 9 0 9 10000% 4 0 0 0 1 1 4 6 166
S 0 0 0 0 0 6 6 10000% S S 0 0 0 2 2 9 2222%
SP21 0 3 0 0 0 O 3 100.00% SP21 6 2 2 0 1 1 12 1667%
2 0 0 6 0 0 0 6 10000% 2 3 0 2 0 2 2 9 2222%
30 0 06 0 0 6 10000% 34 00 0 3 2 9 000%
4 0 0 0 0 7 0 7 10000% 4 5 0 0 2 1 0 8 1250%
S 0 0 0 0 0 8 8 10000% 5 S 00 0 2 0 7 000%
SP31 0 6 0 0 0 O 6 100.00% SP31 6 0 1 0 1 1 9 0.00%
2 0 0 6 0 0 0 6 10000% 2301 0 0 5 9 1L11%
30 00 5 0 0 5 10000% 33 0 2 3 2 0 10 30.00%
4 0 0 0 0 4 0 4 10000% 4 5 0 2 0 0 4 11 000%
5 0 0 0 0 0 9 9 10000% 50 01 0 0 5 6 8333%
SP41 0 5 0 0 0 O 5 10000% SP4a1 3 1 2 0 3 1 10 10.00%
2.0 0 7 0 0 0 7 10000% 2 3 01 0 2 2 8 1250%
30 0 0 4 0 0 4 10000% 3 4 01 1 2 3 11 909%
4 0 0 0 0 7 0 7 10000% 4 S 1 1 0 0 1 8 000%
5 0 0 0 0 0 7 7 10000% S 3 0 0 1 1 3 8 37.50%
SPS1 0 4 0 0 0 0 4 100.00% SP51 4 0 3 1 3 0 11 0.00%
2 0 0 8 0 0 0 8 100.00% 2 40 2 1 0 0 7 2857%
30 00 7 0 0 7 10000% 33 0 4 1 0 0 8 125%
4 0 0 0 0 4 0 4 10000% 4 4 1 4 1 1 0 11 9.09%
5 0 0 0 0 0 7 7 10000% s 11 3 0 2 1 12.50%
SP61 0 5 0 0 0 O S5 100.00% SP61 3 1 1 2 0 3 10 10.00%
2 0 0 6 0 0 0 6 10000% 2 30 3 1 0 2 9 11.11%
30 00 6 0 0 6 10000% 33 01 3 0 2 9 3333%
4 0 0 0 0 6 0 6 100.00% 4 3 0 2 1 0 3 9 000%
S 0 0 0 0 0 7 7 100.00% 5 2 0 0 1 1 4 8 5000%
SP7T1 0 4 0 0 0 0 4 100.00% SP7T1 S 0 2 0 3 1 11 000%
2 0 0 8 0 0 0 8 10000% 2 1 1 1 0 3 1 7 1429%
300 0 3 0 0 3 100.00% 32 0 6 2 2 0 12 1667%
4 0 0 0 0 8 0 8 10000% 4 4 0 2 0 0 1 7 000%
S 0 0 0 0 0 7 7 10000% 5 3 06 2 0 2 1 8 1250%
SP81 0 3 0 0 0 0 3 100.00% SPE1 S 0 5 0 1 1 12 0.00%
2 00 7 0 0 0 7 100.00% 2 301 2 1 1 8 1250%
30 0 0 6 0 0 6 10000% 3 4 01 3 0 1 9 3333%
4 0 0 0 0 6 0 6 100.00% 4 7 0 0 0 2 0 9 2222%
5 0 0 0 0 0 8 8 100.00% 5.2 0 0 1 2 2 7 2857%
SP91 0 5 0 0 0 0 S 10000% SP91 3 1 2 3 0 1 10 10.00%
2 0 0 7 0 0 0 7 100.00% 2 21 2 0 0 3 8 2500%
300 0 5 0 0 5 100.00% 331 5 1 0 0 10 10.00%
4 0 0 0 0 S 0 5 10000% 4 30 2 1 1 3 10 1000%
5 0 0 0 0 0 8 8 100.00% S 2 0 1 0 2 2 7 2857%
SPIO 1 0 8 0 0 0 0 8 100.00% SPI0 1 4 1 1 0 1 0 7 1429%
2 0 0 5 0 0 0 5 100.00% 2 4 1 1 0 3 1 10 10.00%
3006 7 0 0 7 10000% 3 2 0 2 3 0 1 8 37.50%
4 0 0 0 0 7 0 7 10000% 4 4 2 2 0 0 0 8 000%
5 0 0 0 0 0 3 3 10000% S 6 2 0 1 3 0 12 000%
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